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Abstract

An infinite plate of neo-Hookean elastic material is
bonded on one face to a rigid substrate. It is subjected to
a uniform shear and dead-loaded with a uniform thrust. A

periodic bifurcation solution is obtained when the thrust per

unit area exceeds a critical value. The relation between the

wave-length, thrust, amount of shear and plate thickness is
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1, Introduction

In this paper we consider the critical loading conditions
for which a bifurcation solution is obtained when an infinite
plate of incompressible isotropic neo-Hookean elastic material,
bonded on one face to a rigid substrate, is subjected to a
uniform shear of amount K and simultaneously dead-loaded on
the other face by a uniform normal thrust.

We suppose that an infinitesimal spatially periodic defor-
mation is superposed. A secular equation is obtained for the
determination of the wave-length of the superposed deformation.
This secular equation yields a real value for the wave-length
when some critical value of the normal thrust per unit area,
which depends slightly on K , and is approximately equal to
twice the shear modulus, is reached. For this critical value
of the thrust, the wave-length of the infinitqsimal superposed
deformation is zero and, as the thrust is increased beyond this
value, K remaining fixed, the wave-length increases.

Except at values of the thrust per unit a‘ea near the
critical value, the wave-length is proportional to the square
root of the thrust per unit area and is nearly independent of
K . At values of the thrust near the critical value, the wave-
length becqmes e: ‘1ly sensitive to the thrust. At all
values”qf§thgf§hrusz .-10f K, the wave-length is propor-
tional to'thélﬁhickness of the plate, as may be expected from
dimensional qgnsiderations.

For'spGCif&ed values of the thickness and of the thrust
per unit area, beyond the critical value of the latter, a

periodic static bifurcation solution is obtained with uniquely




determined wave-length. However, if the plate were finite in
the direction of the periodicity, the end conditions would en-
able us to determine the spectrum of values of the wave-length,

and hence of the thrust per unit area, at which the bifurcation

solution can occur.




P

—

2. Basic equations

We consider a flat plate of incompressible isotropic neo-
Hookean elastic material of thickness h to be located with
its major surfaces normal to the 2-axis of a rectangular Cartesian
coordinate system x . The dimensions of the plate in the 1 and
3 directions are supposed large compared with h .

Let £ be the vector position of a generic particle of the
plate in its undeformed state and let 5a(a-1,z,3) be the com-
ponents of § in the system x . We suppose that initially the
plate is located with its major surfaces in the planes 62 = 0
and £, = h and that the face &, = 0 is bonded to a rigid
plate which remains fixed in space.

Suppose the elastic plate undergoes a deformation in which
a particle initially at £ moves to vector position x with
components xi(i-l,Z,S) in the system x . Then, the strain-
energy W per unit volume is given, in appropriately chosen j

units, by
= 1 - -
w f(xi,axi,a 3, (2.1)

where ,a 1is used to denote differentiation with respect to £, -

The Piola-Kirchhoff stress ﬁ;i ,» Treferred to the system x ,

is given by

- - - 1 —-—
Hui xi’a Vi PeijkeaBij ’Bxk’Y ’ (2.2)

where €5k denotes the alternating symbol and P is an arbi-

trary hydrostatic pressure. Since the material considered is




incompressible

det|x; | = 1. (2.3)

We now suppose that the deformation £ + x is the resul-

~

tant of a finite deformation £ + X and an infinitesimal defor-

~

mation X + x , where

-~

x =X+ eu . (2.4)

and € is a small parameter. We assume that the force system
associated with the deformation £ + x differs by terms of
order ¢ from that associated with the deformation E§+X .

We accordingly write

Myg = Mg * €My » P =P+ ep . (2.5)

Then, from (2.2) we obtain, with (2.4) and (2.5),

1

Tei ™ Xi,0 ™ 7 Pei5x%asy™y, 6%k, v *
1
2

T . = U, -

ai ™ Yi,a €55x%asy P Xk, v%5,8* X5, 8%, y)

8 > P S I (2.6)

Similarly from (2.3) we have

det|xi’al -1, eijkeuﬁvxi,axj,ﬂuk,v =0 . (2.7)




m. . =0 and = =0 . (2.8)
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3. The governing equations

If the deformation £ + X 1is a simple shear of amount K ,
for which the direction of shear is the l-direction and the
plane of shear is the 12-plane, then

Xl = El+ K£2 ’ X2 = 52 sy X, =§ (3.1)

3 3°

We shall assume that the superposed infinitesimal deformation

X+ x is a plane deformation in the 12-plane. We can then write
ul = ulcgl’gz) » u2 = uacgl’gz) H u3'- 0 . (3'2)

With (3.1) equation (2.7)1 is automatically satisfied and
with (3.1) and (3.2) equation (2.7)2 yields

ul’1 + u2’2 - I(ua’1 =0 . (3.3)
Also, with (3.1), (3.2) and (3.3) equations (2.6) yield
Mg =My =T33=1-P, T, =K, I, =K,

(3.4)

and

LE BT

2” Pul,l- P, "3'3"1”
(3.5)
"12'“2,1*PP1,2’9K’ w21-u1’2+Pu2’1,w3l-wl3-w23-w32- 0.

Upp " Puy 5, s Py Ty B




With (3.4), equation (2.8); implies that P is conmstant. o

With (3.5), the incremental equation of equilibrium (2.8)2

yields

u1,11+ u1,22 = P’l s u2’11+ u2’22+ Kp,la p’2’ p’3 = 0. (3.6)

The last of these equations implies that p = p(§;,§,) .
From (3.3) it follows that there exists a function
w(el.ea) in terms of which we may express ", u,. by the %

relations ]

I TP R (3.7)

By substituting (3.7) in (3.6)1 2 and eliminating p , we obtain
’

VELQA+K2IW,,, *+ ¥y, - 2K, ] =0, (3.8)
where
2 2
v2 - -25 + -15 . (3.9)
agd 3E3

We shall obtain solutions of (3.8) which are sinusoidal
in the 1-direction. Accordingly, with the usual complex nota-

tion, we write

1k€1
V= ¢(52)e , (3.10)

where k 1is a constant. Introducing (3.10) into (3.8), we

obtain




o' 2ukke' " - K2(2+k®)¢" + 21k3ke’ ¢ K*(1+kD)g = 0, (3.11)

where the prime denotes differentiation with respect to &5 .

Equation (3.11) has the general solution

L a,
6= 5 ae 2, (3.12)
A=1

where the a's are (complex) constants and the a's are given

a, = k, a, = -k , a, = k(1+K) , a, = k(-1+1K) .
: (3.13)
With (3.10) and (3.12), we obtain from (3.7)
1kE, b4 a,E
u, = e lAzl (ap-1kK)a,e A=2 ,
(3.14)
1kE b a,E
u, = -ike 612 aze A2
A=1
With (3.14), equations (3.6) yield
1kE, b a,g
Pyy = © 1Azl (ai-kz)(aA-tkK)aAe A*2 ,
(3.15)

1kE, L a,
Poy = € 1A21 (a2-k?)[-1k(1+4K?) + KayJa,e A2 .

These equations yield

1kg a,€
p= - % e 1 % (ai-ka)(aA-tkK)aAe A2, constant . (3.16)

A=1




With (3.14) and (3.16), we obtain from (3.5) .

2
1kE. L o a,E
1 A 2 A2

11 %€ AZI {1kaA(P + k—z) + KaA}aAe ,

E ]
"

tkE]_ b al a,. g
Too = © Agl {-maA(z + P -i%)+ K(ui-ka—kaP)} aze A2 |
2 ]
k&, L o
A
T, = e ) {-tha P-1+ ) (3.17) !
12 A=1 A< X2 .
a, &
+ k2(1+K%) + uﬁ(p-xe)} ae AT2 1

1k, b 2,2 @pts
01 e Azl {-tkKaA-b(aA*'k P)}aAe .

A
[ ]




Solution of the secular equation

In this section we shall assume that the surface conditions

on the surface 52 = h are dead-loading conditions. Accordingly,

™ A | - h=0. (4.1)
22]€,=h 21|1€,= h

On the surface 52 = 0 , we have

u - =u an = . (4.2)
. 1|€2 =0 2 52 0 ~

Introducing (3.14) into (4.2), we obtain

4 b
} (a,-1kK)a, = 0 I a, =0. (4.3)
; A=1 A A T a1 A

Again introducing (3.17)2 4 into (4.1), we obtain
’

4 4 :
Azl Bya, = 0, Azl Chap = 0, (4.4)

where

2
o a,h
k (4.5)

a,h
CA = {}tkKaA + aﬁ+k2€}e A .

The necessary and sufficient condition for (4.3) and

(4.4) to have a non-trivial solution for a, is




12.

B B B Bh = 0 . (4.6)

With the expressions (4.5) for BA and CA » the secular

| equation (4.6) can be rewritten (see Appendix) as

81Q2 +28Q+8B,=0, (4.7) ‘
where

Q=1+P, i

i B, = (k%+4) - (K2cosh2y + 4cos Ku) ,

B, = 2K2(cosh2u*cos Ku) , (4.8)

2

B, = K2[(K2+4) + (K2cosh2u + 4cos Ku)] ,

3

with

u = kh . (4.9)

From (4.7), Q 1is given by

Q= g 821(52-3133)”}. (4.10)

We note from (4.8) that




13.

82-8,8, = K2(k%+4) (K®sinh®2u-4sin®ky) ,
B, = -2(K?sinh®u-4sin®3Ku) , (4.11)

83 = 2K2(K2cosh2u*4coszéxu) .

Since K2sinh®2y > 4sin®ky  for all K and u , it follows
from (4.10) and (4.11), that Q 1is real for all K and u .

Also, it is evident from (4.11), ; that B8, < 0 and B, >0 .
14

3
It follows that the negative alternative in (4.10) leads to a
negative value for Q . Since, from (3.4), the condition for
the normal traction on 52 = h to be a thrust is P > 1 , i.e.
Q>2, it follows that the negative alternative in (4.10)
corresponds to the normal traction on Ea = h being tensile.

We rote also that B8, > 0 . Accordingly, the necessary

2
and sufficient condition that Q > 2 , i.e. the normal traction

is a thrust, is
2.2 aY% ., _9r .
(82 8183) > 281 82 . (4.12)

From (4.8) it follows that

26,+ 8, = 2 (K2+4) (1-cos Ku) . (4.13)
Accordingly, apart from the trivial case when cos Ku=1 ,
the inequality (4.12) is always satisfied by the positive alter-
native in (4.10). We conclude that this corresponds to the nor-

mal force on the surface £, = h being a thrust. In the remain-

der of this paper we consider only this situation.
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14.

In Fig.1l we plot from (4.10), with (4.8) and (4.11), the
values of the thrust N = P-1=Q-2 against u for K fixed.
The curve in Fig.l was drawn for K = 0.4. However, the depen-
dence of N on K, for K in the range 0 to 0.4, is less
than 2%. It was found from the numbers from which the figure

was plotted that Q - 2 = 13.2/u® for wu<1.

It is instructive to consider three limiting cases.
(a) pu fixed, K+ 0 .
From (4.8) it follows that

8, = 2k? (u2-sinh%) + 0(x") ,

8, = 4K%sinh?u + O(K") , (4.14)

2

8. = 8K2 + Oo(k%) .

3
With these expressions we obtain from (4.10)

z{sinhzu + (sinhhu + sinh®y - ua)k}
Q= 5 > . (4.15)
sinh“py -y

In the limit pu -+, Q=4 .
In the limit w~+0, Q= S(1+ 2) .
’ ua /3

(b) K fixed, u -+ ® .

From (4.8), it follows that, as u + = ,

- 1
81 zK

M

242U .

= lyl,2u




Then, from (4.10), we obtain

Q= 2+ (K2+a)¥ | (4.17)

| As K increases from 0 to 1 , Qlu_, increases from

4 to 4,236.

(c) K fixed, u-+10 .

From (4.8), we obtain, as u + 0

B, = -gu'K2(k2+4) + 005y ,

B, = wKZ(X%+a) + 0™ ‘ (4.18)

B, = 2K2(k%+4) + o(ud)

3

Then, from (4.10), we obtain

6 2 2
Q=2 (1+ %) » 12.93/u2 , (4.19)
02 Vs

in agreement with the result obtained in case (a).




5.  Appendix
With the expressions (3.13) for @y s equation (4.6) can

be written as

(B)ComBCp) + (BC3-BC,) + (BCy-BC,) + (B,C,-B,C))

+ %IK{(BI-Be)(C3-Ch) - (€,-C)(B,-B)} = 0 . (5.1)

Also, with (3.13) and the notation Q=1+ P and u = kh ,
we obtain from (4.5) '

B. = k2[K(1-Q)-1Qle" ,
B, = ka[K(l-Q)-nQ]e-u ,
B, = -k2[1Q+K(1+1K)]e (1*1KIM |
By, = k2IIQ-K(I-xx)]e‘(l'tK)u ,
(5.2)
C, = ka(Q-IK)eu ,
c, = k2(@s1K)e’"
C, = k2(@r1iK)e (11 K)¥ |

C, = k2(Q-1K)e'(1°‘K)" .

From (5.2) we obtain

B,C, - B,C, = k¥(Q+1K) {21Q+K(1-Q) + K(1+1K) }e'K¥ | (5.3)

1C,-B,C0e? KM« 21ktq +(-1)K2}e2 KM |

B,C, - B.C, = k*(Q-1K){21Q-K(1-Q) -K(1-1K) }e*F¥ |




e st

Whence,
(B,C,-B,C,) + (B,C,-B,C,) = a1kt (Q2ekDetkH | (5.4)
We also obtain from (5.2)

(B;-B) (C3-Cy) - (C1-C5)(B5-By)

- K{[QK(4-Q) + K3](ePre2H) + 2K(Q24KD)Je'KV | (5.5)

With (5.3), (5.4) and (5.5), the secular equation (5.1) may

be rewritten as

-2{Q2+ @-DK?F(1+e?H) + 4(QP4kP)et

+ 3K2{[Q-Q)+K% (ePHre 2y 4 2(Q%xkD)}e M =0 . (5.6)

From this the relation (4.7) with (4.8) is easily obtained.
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